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Abstract. This paper describes the solid-propellant rocket engine structure, including casing 

and filler. The gas flows within the filler channel. Based on numerical conjugate problem 

solution, non-stationary stress-strain states of the casing and filler were determined, as well as 

gas flow parameters in the channel. Within the conjugate problem, the engine is considered to 

be a two-component system: deformable solid body and gas. Conjugate problem solution 

involves specific subtasks related to the conjugation conditions, where Lagrangian approach is 

used for subtasks of solid body. Euler approach is used for subtasks of gas, implying 

immovable boundary of the computational domain on the integration time step. Numerical 
methods are applied in solving subtasks. Specific feature of conjugate problem solution 

algorithm is discrete movable domain boundary interface. 

1. Introduction 

One type of conjugate problems could be considered as the interaction between fluid/gas flow and 

deformable solid body. In this problem formulation, there are at least two physical mediums. This 

interaction occurs on the boundary interface (BI) which is mathematically formulated on the basis of 
conjugation conditions i.e. continuity of such values as forces and velocities. Thus, BI mediums could 

be displaced and deformed. 

Conjugate problem is subdivided according to physical processes [1]-[6]. In determining stress-
strain state of a solid body, Lagrangian description involves movable boundaries naturally. The main 

issue in solving conjugate problem is the calculation fluid phase flow field taking into consideration 

movable boundary of the computational domain. At present time to solve such problems ALE 
(Arbitrary Lagrangian-Eulerian) methods are widely used [7]-[10]. They are based on combination of 

Lagrange and Euler descriptions.  

However, the majority of numerical methods applied in calculating fluid phase flow field were 

based on the assumption that its boundaries are not movable (Euler description). On the basis of these 
methods, quite a number of successfully software programs were developed. To solve conjugate 

problem for solid-propellant rocket engine (SPRE) model, the algorithm is applied, where individual 

subtasks are solved on the basis of existing numerical methods and software program modules. It 
should be noted that in the program module Euler approach is applied for the gas medium phase. Input 

data of geometry and structure of space grids, initial and boundary conditions are applied in the 

independent computational modules of individual subtasks for every time integration step. Conjugate 

conditions are realized as data interchange between program modules. Under conditions of the 
conjugate problem, boundary motion of solid phase is continuous, while gas phase boundary motion is 

discrete. This implies that within specific time step the boundary is immovable, whereas its motion is 
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replaced by the gas injection from the boundary itself. In this case, the boundary motion becomes 
jump-wise excluding intermediate states which, in its turn, is determined by the solid body calculation 

results and conjugate conditions. 

2. Problem statement 

Let’s consider compressible gas- solid body system. Gas occupies the domain G(t) within boundary 

G(t), while solid body- S(t) within boundary S(t). Domains G and S have common boundary 

Г, where both mediums interact, whereas, Г=GS. 

In the case of moving gas volume G(t) within boundary G(t), conservation laws of mass, 
momentum, energy are: 

 
( ) ( ) ( )

(( ) ) 0

G G G

b

t t t

d
d dS dS

dt
  

       Q Q v v n H n  (1) 

Vectors Q and H are: 

  , ,
T

e Q v ,  0, ,
Т

P  H τ v q . (2) 

The following notations are applied in expressions (1) and (2): G  gas density; v={i}  gas velocity 

vector, i=1,2,3;  bb iv  velocity vector for points of boundary G,; n  normal vector for 

boundary area element dS; P  pressure;   stress tensor in gas and its components 

, , ,

2
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3
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2

2
e  

 
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 

v
 total energy of volume unit, where 

( 1)

P


 



  internal energy of polytropic gas mass unit with adiabatic index ; q={qi}  heat flow 

vector with its components ,i j ik kq kT    , T  temperature, k  thermal-conductivity coefficient; 

d  volume element of G; dS  surface element of G. In (1), the first term is rate of change Q in 

volume G, the second term is conditioned by a transfer of Q through the boundary G, the third 

term is associated with action of external forces on the boundary G. 

In the finite time interval [t, t+t], derivative with respect to time in (1) is written as: 
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1
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where, corresponding point in time is indicated in the brackets […]. 

Volumes G[t+t] and G[t] are connected by the relation: 

 [ ] [ ] δ ( , )G G Gt t t t t      , (4) 

where, G  integration volume is connected with boundary movement G(t). Then, expression (4) 
enables to write the right-hand side of (3) as: 
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In view of (3) and (5), equation (1) could be transformed into: 
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Within the limits of t  0 equation (6) is: 
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For vector Q(t) 

 
0

[ ]) [l ]im(
t
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In addition, volume element d  G is:  

 d=t(vb n)dS. (9) 

Then, taking into account (8) and (9), the expression in curly brackets (7) is as: 
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 )( 0

G

G
b
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d
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
   v n . (10) 

As a result, equation (1) written for moving volume (Lagrangian approach) is transformed into the 

equation for fixed volume in time for t (Eulerian approach): 

 
[ ] [ ] [ ]

 )  ( ) ( )( ( ) 0

G G Gt t t

t d t dS t dS
t
  


    

   Q Q v n H n , (11) 

with initial condition Q(t=0,r)=Q0(r), rG and means that (10), where Q0 is the initial vector. If 
velocity distribution v'(r,t) is specified on the movable boundary, the boundary condition in the 

transformation to immovable boundary is as follows: 

 v(r,t)=v'(r,t)+vb(r,t), rG, (12) 

where r  radius vector of point on G; v(r,t)  velocity vector on immovable boundary; v'(r,t)  

velocity vector on movable boundary. 

Thus, the volume G(t) and boundary G(t) are supposed to be immovable at time point t within 
time interval dt, whereas, the boundary movement itself could be considered by the boundary 

conditions in (12). Transformation from (1) to (11) could be explained by the fact that the point in G, 
takes the boundary movement through velocity, which is induced by this movement. Nevertheless, this 

velocity could be induced not only by the boundary movement, but also the gas injection from 

immovable boundary (figure 1) as expressed in (12). In the following time point, it is necessary to take 

into consideration the deformation of boundary G under condition in (10). 
 

 
Figure 1. Velocity induced in volume G within G: 1) movable 
boundary; 2) injection from boundary. 

Solid body movement within domain S, is described by geometrically nonlinear system equation:  

1) 2) 
vdt 

vb 
vb 

G 

G 
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with initial and boundary conditions: 

 0
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( 0, ) ( ),

S

S

t

t

   

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 ,

( , ) ( , ),

( , ),

D

b S

n N

k kj ij i j i S

t t

n u p t 

  


   

u r u r r

r r
, (15) 

where, S  density; u  vector displacement of solid body point, u={u1,u2,u3}; u0 и 
0 ( )u r  initial 

displacement vector and velocity of solid body point; ij and  ij  components of stress and strain 

tensors; D

S  and N

S  boundary segments S where Dirichlet (displacement) and Neumann (stress) 

conditions are imposed, S=
D

S  N

S ; ub  vector of boundary displacements; p
n
  load vector on 

surface point designated by normal vector n. 

Continuity conditions of velocity and stress on the boundary  are imposed for conjugation in 
solving problems:  

 ( , ) ( , ),b t t v r u r r , (16) 

 ( , ) ( , ),t t σ r τ r r . (17) 

3. Algorithm solution of conjugate problem 

3.1 Аlgorithm description 

Point of time t, Q[t], u[t], [ ]tu  and boundary [t]. are known. It is assumed that individual non-conjugate 

problems with initial conditions Q[t], u[t], [ ]tu  in time interval [t, t+t] and within domain G and S 

could be solved. Then, the algorithm solution of conjugate problem in time interval [t, t+t] is: 

1. Gas flow problem within domain G[t] with initial conditions Q[t], and condition in (16) within 

[t] is solved; 

2. Values [ ]( ),t t τ r r  are defined; 

3. Elasticity problem within domain S[t] initial conditions u[t], [ ]tu  and condition in (17) within 

[t]; 

4. Vectors u[t+t](r) and [ ]( )t tu r  are defined, where r; 

5. If the condition [ ] [ ]( ) ( ) ,t t t    u r u r r  is met, then the solution of conjugate problem at 

point of time t+t is found. If not, go to item 1, where Q[t] is used as the initial condition, but 

[ ] [ ]( ) ( ),b t t t v r u r r ; 

6. Based on u[t+t](r), r transformation of [t]  [t+t] is fulfilled, where condition in (10) is 
satisfied. 

Two program modules are necessary for the numerical implementation of above-mentioned 

algorithm. One module is applied to solve the gas flow problem within domain G, while the second 

module-elasticity problem within domain S in the following time interval [t, t+t]. Numerical 
methods used in these modules and their direct implementation is beyond the scope. In fact, this 
algorithm describes the data interchange (conjugation) procedures between the two modules. 
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Iteration, described in item 5, is the congruence between the velocity of the boundary movement Г 
and the load inducing this movement.  

In numerical modeling, element mesh covers the domain G forming nodes at the intersection of 

mesh lines. As a result, fulfilling item 6, it is necessary to adjust not only boundary position  (nodes, 

on ), but also node positions in G to exclude over-deformation of the element shapes. Under 

conditions of limited displacement of solid body, the position of nodes within the domain G may be 

adjusted by the solution of elliptical equations. Under conditions of significant displacement, it should 
be remeshed. Subsequently, gas flow problem solution should interpolated from the previous mesh (at 

time point t) to the updated mesh (at time point t+t). 

It should be noted that within the frame of the described algorithm, G and S, 

interconnected with conjugation conditions (16) and (17), exist. Modeling boundary movement G 

has a specific feature involving its discrete movement. Thus, fulfilling item 1, the boundary G 

remains immovable, while its movement is replaced by the gas injection from domain  at velocity vb. 

Let's assume that extra gas mass inflows into the domain G resulting in the failure of the conservation 

law of mass at this stage. Then, in item 6, the position of boundary ГG. is adjusted. Displacement 

vector of boundary point u with the radius vector of rГ, ГG, is:  

 [ ] [ ]( ) ( ) ( ) ( ) ( )t t t bt t      u r u r u r u r v r , (18) 

whereas, condition in (10) should be fulfilled. In this case, boundary  moves jump-wise to the 

position corresponding to the time point t+t. When the boundary moves into the new position, mass 

balance within domain G is reverted, as excess gas mass is beyond the domain G. 

3.2 Аlgorithm testing 

3.2.1 Adiabatic gas compression in movable piston cylinder 

The problem of adiabatic gas compression in movable piston cylinder was described by the authors 

[11]. The above-described algorithm was applied in this case. The walls of the cylinder and piston are 

presumed to be inelastic. This presumption excludes the algorithm in the step which determines the 
deformation of the solid body itself. According to the solution results, numerical conditioned 

deviations to prescribed variables were determined. Specifically, under 1/3 gas compression of the 

initial volume, relative gas mass variation was 2.510
-4
. 

3.2.2 Fluid flow in flat channel with moveable wall 

Let's consider incompressible viscous fluid (water) flow in a flat channel with moveable wall. 
Previously, this problem was examined only experimentally and solved numerically [3], [12]-[15]. In 

question, the numerical model of fluid flow in the channel was based on the geometrical and kinematic 

data described in above-mentioned papers. To calculate the incompressible viscous fluid flow, the 
program module with corresponding functionality was applied. The channel diagram is illustrated in 

figure 2. 

 
Figure 2. Плоский канал с подвижной стенкой 

Outlet 

cross-section Movable wall 

Inlet cross-section of 

steady Poiseulle flow 
Stationary walls 

X 0 

H 

x1 x2 x3 

L1 L2 

=F(t,x) 

Y 
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At initial point of time the flat channel was formed by two parallel walls, the distance being 
H=10

-2
 m. The remaining channel geometrical parameters are L1=9.85H, L2=18Н, x1=4H, x3=6.5H, 

x2=(x1+x3)/2. Upper channel wall is immoveable. The lower wall oscillates with time T. Distribution of 

non-stationary point deviations =F(t,x) in lower channel wall to initial position is described as the 
function  

 

1

1 1 3

3

( ) for 0

( , ) 0.5 ( )(1 tanh( ( ))) for

0 for

t x x

F t x t x x x x x

x x



 

  


    




, (19) 

where, t  time; max( ) 0.5 (1 cos(2 ))t t    , /t t T , max=0.38H; =4.14. The channel is filled 

with fluid, density being =1000 kg/m
3
 and dynamic viscosity =100010

-6
 kg/m/s. 

At initial point of time, fluid flow field in the flat channel responded to steady Poiseuille flow and 

Reynolds number Re=V0H/=507, where V0  is average fluid flow velocity in channel cross-section. 

Pressure gradient, preserving this flow, is equal to P,x=-8Vmax/H
2
, где Vmax=3V0/2. The boundary 

condition at inlet was assigned as parabolic velocity profile, corresponding to Poiseuille flow with 

given Reynolds number. At outlet boundary the pressure is P=0. No-slip condition was assigned to the 

upper wall, i.e. flow velocity components on the wall x=y=0.Velocity component y on the lower 

wall was determined by the velocity of the boundary movement y= ( , )F t x  . Velocity component 

is x=0. Strouchal number is S=H/(V0T)=0.037. Calculated fluid-filled area was meshed with 

quadrilateral grids, including 44381 nodes. Integration step in time t=(1/3)10
-2
s.  

Displacement of moveable wall element changes the channel shape, resulting in the formation of 
the vortex system as illustrated in figure 3. The vortexes are assigned alphabetic notations A, B, C, D 

etc.  

Space mesh was adjusted in each time interval depending on the shape of the lower channel wall. 

Mesh fragment at initial point of time 0t   and the same fragment 0.6t   are illustrated in figure 4. 

Numerically defined vortex positions B, C and D in the coordinates 
*( , ,),X t  where 

 
1/3*

210 ( ) /X St x x H    are shown in figure 5. By comparison, experimental data were represented 

[14], as well as the numerical results from [15]. The fluid flow field behind the moveable section of 

the upper wall in the channel at point of time t =0.4, 0.5, 0.6, 0.7 is illustrated in figure 6. The results 

are depicted as colored isolines of velocity components. To compare, the flow line, numerically 

determined under the same conditions [14] is illustrated. In this case, there exists correspondence in 

number, size and position of the vortexes. 

 
Figure 3. Fluid flow structure behind moveable wall section 

 

  

0t   

0.6t   

A 

B 

C 

D 
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Figure 4. Mesh fragment in different points of time 
 

 
Figure 5. Vortex positions B, C and D in time:  experiment [14], 

 numerical results [15],  present numerical results 

 

  
t =0.4 t =0.5 

  
t =0.6 t =0.7 

Figure 6. Fluid flow field behind moveable element in the channel: colored isolines of velocity 

components х; black-white flow lines [14] 
 

3.2.3 Hydroshock in elastic pipe 

Pipeline section (figure 7), where fluid (water) flow, is considered. Pipeline section length L=15 m, 

outer pipe diameter R, wall thickness h. Fluid flow velocity in pipeline V0=1 m/s. Physico-mechnical 
material characteristics are shown in table 1, while physical fluid characteristics – in table 2. Pipeline 

cross-section parameters which were applied in solving the conjugate problem are represented in table 

3.  
At point of time t=0 the channel was instantly closed by the shut-off valve, located in point x=L. 

Initial and boundary conditions: fluid velocity vector components x(x,r,t=0)=V0, r(x,r,t=0)=0, 

x(x=0,r,t)=V0, x(x=L,r,t)=0; pressure P(x,r,t=0)=0; vector components of displaced solid body 
ux(x,r,t=0)=0, ur(x,r,t=0)=0, ux(x=0,r,t)=0, ux(x=L,r,t)=0; velocity vector components of solid body 

( , , 0) 0xu x r t   , ( , , 0) 0ru x r t   ; stress rx(x=0,r,t)=0, rx(x=L,r,t)=0. 

 

 



CICMCM 2019

Journal of Physics: Conference Series 1459 (2020) 012024

IOP Publishing

doi:10.1088/1742-6596/1459/1/012024

8

 

 
 

 

 

 

 
Figure 7. Problem diagram illustrating hydroshock in pipeline with flowing fluid 

 

Table 1. Physico-mechanical 
characteristics of pipe material 

 
Table 2. Physical characteristics 

of water 

Density, kg/m
3
 7000  Density, kg/m

3
 1000 

Еlastic modulus, Pa 9.8110
10

  Dynamic viscosity, kg/m/s 100010
-6

 

Poisson ratio 0.3  Bulk modulus, Pa 2.210
9
 

 

Finite element mesh, covering the calculated fluid-filled area, included from 60020 nodes (large 

R) to 200020 nodes (small R). Solid body finite element mesh – from 6003 nodes to 20003 nodes. 

Integration step in time t=110
-5

s. 
To calculate weakly compressible fluid flow, the program module with corresponding functionality 

was applied. Based on the numerical calculation results, the velocity of the pressure jump in the 

pipeline apipe and pressure jump value Ppipe were determined. These numerical values were compared 
to the values obtained from the analytical expressions (Joukowski formulas for hydroshock [16]) 

 / 1 2 / ( )pipe w wa a R E E h    , (20) 

 0pipe w pipeP a V  , (21) 

 

where, aw  sound velocity in water, aw=1435м/с; w  water density; Ew  bulk modulus of water; 

E  elasticity modulus of pipe material; R  outer pipe radius ; h  pipe wall thickness. 

Values apipe and Ppipe, numerically obtained and values obtained by Joukowski formulas (20),(21) 

as well as corresponding relative errors 
pipea и 

pipeP  are presented in table 3. Numerical values apipe 

and Ppipe are in good agreement with analytical calculation results. Thus, the error 
pipea was slightly 

more than 1,5%, while error 
pipeP  not more than 2%. 

Table 3. Numerical and analytical values of apipe and Ppipe, ratio errors 
pipea and 

pipeP  

D=2R, mm h, mm 
apipe, m/s 

tubea , % Ppipe, Pa 
tubeP , % 

formula (20) num. solution formula (21) num. solution 

50 7.0 1339.4 1359.7 1.511 1339421 1366200 1.999 
150 9.5 1245.8 1260.0 1.137 1245833 1269400 1.892 

300 12.5 1173.0 1180.0 0.598 1172989 1193000 1.706 

600 18.0 1103.9 1103.3 0.054 1103921 1122200 1.656 

4. Discussion and results 

Axisymmetric SPRE model includes casing with back bottom and front bottom. Front bottom is 

connected to nozzle cluster. SPRE casing consists of filler with inner channel. Casing and filler is not 
rigid and deforms under the pressure of the gas in the channel. Nozzle contour is not deformable. 

Basic dimensions are illustrated in figure 8. 
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Non-deformed line is illustrated as points in figure 8. It includes nozzle contour and part of front 
bottom contour. In determining stress-strain state of SPRE, boundary condition of zero displacement 

u(x,r,t)=0 is imposed on the part of front bottom contour. 

Filler combustion is modeled by gas injection from the free surface of the filler. Free filler surface 

area embraces 3.015 m
2
 (non-deformed channel). Gas inflow from the combustion surface is  215.17 

kg/s. Gas parameters: specific heat capacity (Ср)  2052.4 J/kg/K; heat conductivity  0.41567 

W/m/K; viscosity  9.887910
-5

 kg/m/s; molar mass  27.944 kg/kilomole; gas constant  297 J/kg/K; 

adiabatic index  1.169549; gas temperature (of combustion products)  3400K. Material 
characteristics of SPRE structure elements are described in table 4. 

 

 

 
 

 

Table 4. Material physical-mechanical characteristics of SPRE structure elements 

 Elasticity module, Pа  Poisson ratio Density, kg/m
3
 

Filler 1010
6
2010

6
 0.497 2100 

Casing 3710
9
 0.3 1930 

Back bottom 10
12

 0.3 1930 
Front bottom 10

12
 0.3 1930 

 

 
Figure 8. SPRE diagram: 1) channel; 2) filler; 3) casing; 4) back bottom; 

5) front bottom; 6) nozzle contour; 7) rigid fixing area (for numerical model). 
R1=0.680 m, R2=0.650 m, R3=0.15225 m, R4=0.1015 m, L=1.720 m, h=0.03 m. 

The mesh covering calculated areas of solid body and channel is demonstrated in figure 9. As is 
clear from figure 9, mesh lines are linked on the medium BI. This approach in mesh generation 

significantly simplifies the calculation process. However, mesh line continuity on the fluid-solid body 

boundary results in the over-concentration of solid-body mesh, particularly, in the contact area of that 
mesh covering the boundary layer of the nozzle contour. 

 

 

X 

R 

1 

3 

4 

6 

2 5 

7 

R2 

L 

R1 

R3 R4 

h 



CICMCM 2019

Journal of Physics: Conference Series 1459 (2020) 012024

IOP Publishing

doi:10.1088/1742-6596/1459/1/012024

10

 

 
 

 

 

 

Figure 9. Mesh coverings for different areas in SPRE 
numerical. models 

Time integration step was 10
-5

s.  
The calculation results are represented in figures 10-14. 

Pressure calculation results at SPRE back bottom for different filler elasticity modules are 

illustrated in the graph figure 10. The curves show that the lower the filler elasticity module, the 
higher the steady gas pressure. This could be explained by the fact that the channel deforms when 

exposed to gas pressure (figure 11). In this case, the channel area increases, resulting in the mass 

increase of gas inflowing from the channel surface. In these conditions, the umbrella-shaped indent 
expands significantly in the filler, while the radius of the cylindrical channel section, located between 

the umbrella-shaped indent and nozzle, increases. Decreasing filler elasticity module increases the 

deformation of the channel, especially within the umbrella-shaped indent. 

Figure 12 illustrates the (R) change in time of channel radii in the filler (R1) and outer radius of 

engine casing (R3) at section x=L/2. Calculation results showed that under gas pressure in the channel 

values R1 and R3 increase within the time interval t =0.04 s, which further indicate oscillations near 
equilibrium values. This behavior is specific for the radius R3. Decreasing filler elasticity module from 

20 MPa to 10 MPa results in the redistribution of the gas-pressure load from the filler to the engine 

casing. This causes R3 increase to 6 mm, while R1 to 0.2 mm. 

Figures 13 and 14 illustrate the displacements (ux) and velocity distributions (x) at SPRE back 

bottom depending on time for filler elasticity modules E=20 MPa and E=10MPa. As seen on the 
graphs, back bottom displacement to a new equilibrium state is observed at the initial time interval 

(t < 0.04 s) under gas pressure. In the following time intervals, back bottom oscillates near equilibrium 

state.  

It should be noted that although changes of the filler elasticity module affect ux(t) and x(t) 

dependencies; however, these dependencies are close in values. Thus, in both cases, at t > 0.04 s, back 
bottom oscillates at the average displacement value is ux, i.e. about 16 mm and average zero velocity. 

Maximal displacement velocity is 2.5 m/s for E=20 MPa and 2.7 m/s for E=10 MPa. Oscillation 

periods near equilibrium state are 1.37210
-2
s and 1.39510

-2
s, respectively. 

Weak effect of filler elasticity module value on ux(t) and x(t) dependencies could be explained by 
the existing umbrella-shaped indent. In this case, the filler becomes weak as a rigid element in the 

engine construction. As a result, the casing stiffness determines SPRE axial stiffness. 

 
Figure 10. Gas pressure within SPRE back bottom depending on time for different filler 

elasticity modules E 
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Figure 11. SPRE channel profile under different filler elasticity modules E, at time point 7.2510

-2
 s. 

 

 
Figure 12. Changes of radii R1 and R3, at x=L/2, E=20 MPa, E=10 MPa. 

 

 
Figure 13. Displacement of the back bottom 
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Figure 14. Displacement velocity of the back bottom 

5. Conclusion 

Based on the calculation results of conjugate problems for gas- solid body system, the dynamic 
behavior of SPRE model was considered. Dependencies P(t) in the filler channel, including the SPRE 

construction and gas flowing in the channel interaction, were obtained. SPRE model construction 

deformation was estimated within radial and axial directions considering the channel shape and the 

filer physical-mechanical characteristics. 
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Notifications  

SPRE  solid-propellant rocket engine. 

BI  boundary interface. 
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